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Abstract. A quasi-two-dimensional magnetic system is studied in which magnetic atoms are
confined in the two-dimensional plane but the conduction electrons are in fact three-dimensional.
By virtue of spin-wave theory, we find that a spectrum gap can be formed at the bottom of the
spin-wave spectrum, induced by the s–d exchange interaction between conduction electrons and
magnetic localized electrons. Thus, a new possible mechanism is proposed for two-dimensional
ferromagnetic order at finite temperature.

1. Introduction

Whether or not two-dimensional (2D) ferromagnets exist has been a controversial problem
for several decades. The usual spin-wave theory implies that no ferromagnetism can exist
in 2D if the dispersion relation between the energy spectrum and wave vectorωq ∼ q2

holds. The reason for this lies in the logarithmical divergence of the thermal excitation
spin waves. The argument, first proposed by Bloch [1], was later rigorously proved by
Mermin and Wagner [2], who showed that no 2D long-range magnetic order can exist
at finite temperature provided that the interactions between spins are isotropic and short
ranged (more precisely, the intersection must decrease more rapidly than 1/r3, wherer is
the distance between atoms).

The old problem of 2D ferromagnetic order has attracted renewed interest in recent
years due to the development of ultrahigh-vacuum technology, via which clean monolayers
of high structural quality can be made and where long-range ferromagnetic order is found
experimentally. Since an ideal 2D system cannot in practice exist, these phenomena are
usually referred to as quasi-2D ferromagnetism. Evidence was first reported by Flevariset
al [3] in 1980, and verified in many later studies [4–5]. Moreover, ultrathin magnetic layers
and multilayers are subjects of intense current research, because of their novel properties,
such as in the problems of surface magnetization [6–8] and especially the interlayer exchange
coupling and giant magnetoresistance [9–11].
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In order to give an interpretation of the experimental results theoretically, many
investigations have been carried out as a result of the fact that the Mermin–Wagner theorem
cannot be fulfilled by a real physical system. First, a two-dimensional system is intrinsically
anisotropic. Due to uniaxial anisotropy, the logarithmic divergence could be removed by
opening a gap at the bottom of the spin-wave spectrum, and therefore stabilizing the long-
range ferromagnetic order. This mechanism was carefully studied by Döring [12] and
Corciovei [13]. Secondly, magnetic dipole–dipole interactions (which decrease liker−3)
always exist. The effect of this on the magnetic long-range character was discussed by
Maleev [14], and quite recently by Yafetet al [15]. Furthermore, by taking into account
both the anisotropy and the dipolar interactions, Bruno [16] has recently investigated the
2D magnetic behaviour using spin-wave theory.

However, both the above mechanisms seem to encounter difficulties in sustaining the
long-range magnetic order at finite temperature. In a case where a uniaxial anisotropy
favours an easy-magnetization plane rather than an easy-magnetization axis, the spins would
be freely rotated in the easy plane and no spectrum gap would appear [16]. Additionally the
dipolar interaction alone seems too weak to stabilize the magnetic order at finite temperature.
Thus, it is worthwhile to find out whether there exist other possible mechanisms that may
overcome the difficulties. In this paper, we will suggest a new possible mechanism, the s–d
exchange interaction, which also leads to a spectrum gap in the 2D spin wave. This differs
from the crystalline anisotropy approach in that the bottom of the spectrum gap induced by
s–d interaction is independent of the magnetic anisotropy.

2. The Hamiltonian and the general formula for quasi-two-dimensional magnetic
systems

We first give the physical picture of the system. For simplicity, we consider the magnetic
monolayer to be a simple square lattice, and the set of magnetic atom position vectors is
confined inx0y-plane and can be represented as

rn = a(nxex + nyey) (1)

wherenx, ny = 0, ±1, ±2, . . . anda is the lattice constant. Note that in a practical system,
the magnetic monolayer is grown on a substrate and covered by a protective layer (usually of
a noble metal, such as Ag—see, e.g., [9]) with the thickness of a few nm. We consider that
not all of these nonmagnetic substrate and covered materials can be neglected, because they
may contribute conduction electrons (we will call these electrons s electrons and assume that
their energy band has the free-electron structure), and these conduction electrons may have
exchange interactions with the localized magnetic electrons (they are called d electrons
hereafter). This is the well known s–d exchange interaction, and in this paper we will
suggest that the interaction is one of the main contributions to the quasi-two-dimensional
ferromagnetic order at finite temperature. Thus, both for simplicity and to obtain a clearer
physical picture, the crystalline anisotropy and dipole–dipole interactions are not considered
in our following discussions.

Three numerical parameters,Ne, Nm and Nv, are important in our further discussions
and must not be confused;Ne is the number of conduction s electrons which can move
freely in 3D rather than 2D,Nm is the number of magnetic unit cells and also the number
of localized d electrons with nearest-neighbour Heisenberg interactions, andNv is the total
number of unit cells, including not only those of the magnetic monolayer but also those
of the substrate and covered materials—which we have simply assumed to have the same
unit-cell volume as the magnetic layer.
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We can write down the Hamiltonian of the system as

Ĥtot = Ĥs + Ĥm + Ĥsd (2)

which indicates the sum of the Hamiltonians of conduction s electrons, localized magnetic
electrons and s–d exchange interactions, respectively. In this paper, we setĤ0 = Ĥs + Ĥm

as the unperturbed Hamiltonian; it is chosen as the sum of the free band electrons and the
2D Heisenberg model:

Ĥ0 = Ĥs + Ĥm =
∑
k,σ

εkâ+
kσ âkσ − Jm

∑
〈i,j〉

Ŝi ·Ŝj (3)

whereεk = k2/2m and we have chosen ¯h = 1 for simplicity. k andm are the wave vector
and effective mass of s electrons.â+

kσ and âkσ are creation and annihilation operators.Jm

is the exchange integral describing exchange between magnetic electrons, andŜi ,Ŝj are the
spin operators at sitesi, j . The sum denoted in〈 〉 is restricted to the nearest-neighbour
pairs.

The perturbation Hamiltonian of the exchange interactionĤsd can by virtue of the spin-
operator representation for magnetic electrons and the single-occupation condition, be given
as [17]

Ĥsd = − 1

Nv

∑
k,k′,n

ei(k′−k)·rnJ (k′, k)
{(

â+
k↑âk′↑ − â+

k↓âk′↓
)

Ŝz
n + â+

k↑âk′↓Ŝ−
n + â+

k↓âk′↑Ŝ+
n

}
(4)

in which Nv is the total number of unit cells as defined above, and↑ and↓ represent the
spin directions of s electrons parallel and antiparallel to the magnetization direction. From
symmetry considerations it is reasonable to assume that the magnetization direction would
be perpendicular to the magnetic layer plane, i.e., in the same direction asez. Hereafter,
we will make the usual approximation|J (k, k′)| ≈ constant, and denoteJ (k′, k) as Jsd .
Physically, the first term in (4) corresponds the conduction electron’s polarization due to
the s–d exchange interaction and the other two terms correspond to the spin-flip processes.

Suppose that the ground-state magnetic axis of the system has all spins up, in theez-
direction; the Holstein–Primakoff transformation then gives (the constant term is omitted)

Ĥm ≈
∑

q

ωq b̂
+
q b̂q (5)

where the spin-wave vectorq ∈ �∗, and�∗ is the inverse wave-vector space of the magnetic
layer. b̂+

q and b̂q are creation and annihilation operators ink-space.ωq = zJm(1− γq) and
γq = z−1 ∑

a eiq·a, in which z is the number of nearest neighbours anda is the nearest-
lattice-position vector. The interactions of four boson interaction are neglected.

The above treatment will also work for̂Hsd . For simplicity, we will omit the polarization
term, i.e., the first term ofĤsd in equation (4); this is permissible for the following two
reasons. First, it is obvious that the first-order perturbation contribution is zero, and a
second-order treatment will lead to fourth-order boson interactions—which are negligible
since the spin-wave interactions of four bosons have already been neglected in the Holstein–
Primakoff transformation. Secondly, we have noticed some early work by Kim and Nagaoka
[18] from 1963, which reinforces our point made above. In their work, they discussed the
effect of s–d exchange interaction on the localized magnetic moment. According to their
calculations, they find that the effect of theŜz

n-term is mainly to shift the total energy level
(i.e., it provides a constant term in the Hamiltonian), whereas theŜ±

n -term will affect the
localized magnetism. Now, using the notationu = (k′ − k)‖ and v = vez = (k′ − k)⊥
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(i.e., the compound vectors in thex0y-plane andez-direction respectively), ink-space one
gets

Ĥsd ≈ −N
1/2
m

Nv

∑
κm,q

∑
k,u,v

(
Jsd â

+
k↑âk+u+v↓b̂+

q + HC
)

δ(u, κm + q) (6)

whereκm = 2π(mxex + myey)/a, mx, my = 0, ±1, ±2, . . ., is the reciprocal-lattice vector
in the square magnetic plane. The factorδ(u, q + κm) arises because the spin-wave
vector q is confined in�∗ whereasu, corresponding to the in-plane compound vector
difference between the position of the conduction electron before and after scattering, is in
fact unrestricted.

To find the eigenvalue spectrum of̂Htot , we will use the technique of canonical
transformation:

Ĥeff = exp{−2̂} Ĥtot exp{2̂} (7)

where the rotation operator in Hilbert space is chosen as

2̂ = −N
1/2
m

Nv

∑
κm,q

∑
k,u,v

Jsd â
+
k↑âk+u+v↓b̂+

q − HC

εk+u+v − εk − ωq
δ(u, κm + q). (8)

Substituting (8) in (7), expanding the exponential term and averagingĤeff in the
conduction electron’s state, we find the first-order boson term is removed. Now, the two-
dimensional effective-boson spin-wave interaction will be given as

〈Ĥeff 〉bos ≈
∑

q

(
αq + ωq

)
b̂+

q b̂q (9)

where the conduction electron term and the constant term are omitted, andαq can be
expressed as

αq = 2Nm

N2
v

∑
κm,v

∑
k

|Jsd |2 〈nk〉 − 〈nk+u+v〉
εk+u+v − εk − ωq

δ(u, κm + q)

= 2Nm

N2
v

∑
κm,v

∑
k

|Jsd |2
[

f (εk, T )

εk+u+v − εk − ωq
+ f (εk, T )

εk−u−v − εk + ωq

]
δ(u, κm + q)

(10)

in whichf (εk, T ) is the Fermi distribution of conduction electrons. Usually the temperature
T is not very high; thenf (εk, T ) ≈ θ(kF −k) holds, in whichkF is the Fermi wave vector.
In this case, the sum overk can be calculated analytically, similarly to in the calculations
on RKKY interactions [17]. One obtains

αq =
∑

v

|Jsd |2
[
B(ωq,

√
q2 + v2 ) + B(−ωq,

√
q2 + v2 )

]
(11)

with

B(ω, x) = 3NeNm(x2 + 2meω)

16N2
v εF x2

[
1 + 4k2

F x2 − (x2 + 2meω)2

4kF x(x2 + 2meω)
ln

∣∣∣∣x2 + 2meω + 2kF x

x2 + 2meω − 2kF x

∣∣∣∣]
(12)

in which εF is the conduction electron’s Fermi energy. Since we can easily check
that the functionB(ω, x) decreases dramatically asx increases, both for simplicity and
reasonableness, we here only concern ourselves with the contribution of theκm = 0 term—
or ‘Umklapp process’ of (10)—in (11), and so we setq = u.
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An energy gap will appear atq = 0, the bottom of the spin-wave spectrum, forα0 6= 0.

From the assumption that|Jsd | is constant, the integral of (11) can be exactly calculated at
q = 0. Similarly to in the treatment in [16], we can introduce an equivalent magnetic field
Hsd = α0/µB . One has

α0 = µBHsd = 3ηπkF a|Jsd |2
16εF

(13)

where η = Ne/Nv is the number of conduction electrons per lattice cell. For a square
lattice, we haveωq ≈ Jma2q2. Usually the exchange energyJm for the exchange between
magnetic electrons is considered to be far larger thanJsd , and thus the contribution of the
s–d exchange interaction can be neglected atq 6= 0. Now, the energy spectrum of (9) is
ω′

q ≈ α0 + ωq = µBHsd + Jma2q2. The dispersion relation is very similar to the form
of the anisotropy contribution in the case of a perpendicular easy axis, which has already
been well discussed by D̈oring [12]. Following an expression from [16], we can write the
relative magnetic moment variation1M(T )/M(0) as

1M(T )

M(0)
= 1

Nm

∑
q

〈b+
q bq〉 = − kBT

4πJm

ln

[
1 − exp

(
−µBHsd

kBT

)]
. (14)

Equations (13) and (14) are the major results of this work.

3. Calculations and discussions

Because ferromagnetic order exists at finite temperature only when1M(T )/M(0) < 1, it
can be seen clearly from (13) and (14) that the systems with highJm and highJsd will
favour long-range order at finiteT . This is, of course, physically reasonable.

Since (14) has the same form as theeffective anisotropy approximation[12, 13, 15, 16],
for which numerical calculations and comparisons with experimental results have already
been well discussed by Bruno [16], we will not discuss it again here. However, it is worth
emphasizing that the parameterH

eff

K (the effective magnetic field of the anisotropy) given
phenomenologically in [16] surprisingly coincides numerically with ourHsd . On choosing
the usual values:kF a ∼ 3–10,η ∼ 1–3,εF ∼ 3–10 eV,Jsd ∼ 10−2 eV, equation (13) gives
Hsd ∼ 100–102 kOe. In [16], in order to compare theoretical results with the experimental
ferromagnetic properties of Co fcc(001) monolayers [5],H

eff

K is chosen as 2, 14, and
100 kOe. Obviously, these values lie in the range of ourHsd . Thus, we conclude that we
can indeed explain the origin of quasi-two-dimensional ferromagnets via a new possible
mechanism—the gap induced by s–d exchange interactions.

According to theeffective anisotropy approximation, problems may arise in the case of
easy-plane anisotropy, in which the ferromagnetic order cannot be sustained unless much
weaker dipolar interactions are considered to provide a key contribution. However, in our
s–d exchange interaction approach, this difficulty does not exist, since the induced bottom
gap always exists and is independent of the direction of the anisotropy. Nevertheless, we
feel that it would be interesting and meaningful to consider the contributions of both the
s–d exchange interaction and the anisotropy to the quasi-two-dimensional ferromagnetism,
and such a consideration may appear in a future publication.

To make the salient points of our treatment and the physical picture of our result
clearer, it is necessary to give a more exact theoretical discussion. First, the physical
picture in our model is that the s–d exchange interaction does indeed provide an effective
long-range coupling among magnetic atoms, i.e., the coupling falls off as the cube of
the distance between magnetic atoms. Thus, in this quasi-two-dimensional model it is
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theoretically possible to stabilize the ferromagnetic order at finite temperature—due to the
condition of short-ranged interaction of the Mermin–Wagner theorem [2] not being satisfied.
Secondly, we must point out here that it is not only because of physical reasonableness (as
discussed above) that our treatment of s electrons should be in 3D rather than 2D, but also
because going to three dimensions is a prerequisite for generating a spectrum gap in such a
Hamiltonian. In fact, from the symmetric point of view, if s electrons are also confined in
2D, then the total Hamiltonian will have full rotational symmetry both in spin space and in
real space. In this case, the Goldstone theorem [19] must be satisfied, which tells us that
the excitation spectrum of such a system should be gapless!

The above theoretical analysis is supported by our calculations. In fact, the spectrum
gap induced by three-dimensional s electrons and local d electrons is comparable with the
crystalline anisotropy approach [13, 16], as shown above. However, if the s electron is also
confined in 2D, the calculation of equation (10) indicates thatαq (asq → 0) in 2D will be
two orders of magnitude less than in the 3D case—this is not surprising, since the value
zero is expected, and the reason for the value being slightly greater than zero arises only
from the perturbation approximation error, we believe.

Another interesting conclusion is that a high density of conduction electrons, i.e.,
a large value ofη in (13), will favour the quasi-two-dimensional ferromagnetic order,
according to our approach. Experimentally, the prediction can be easily checked by making
measurements on the same monolayer magnetic materials grown on different substrates and
covered by different protective layers.

4. Conclusion

To conclude, we point out that the contribution of the s–d exchange interaction cannot be
negligible in the problem of quasi-two-dimensional ferromagnetism. By virtue of spin-
wave theory, we find that a gap may be induced at the bottom of the spin-wave spectrum
due to the s–d exchange interaction and thus provide a new mechanism for inducing 2D
magnetic order at finite temperature. The main difference from theories advanced up to
now is that our approach is independent of the magnetocrystalline direction. Since our
theory indicates that a higher density of the conduction electrons of the system may be
favourable for sustaining magnetic order, we suggest that the magnetic moment of the
magnetic monolayer may depend on the substrate and covering layer. However, this should
be checked experimentally. Moreover, although the magnetocrystalline anisotropy in thin
films has already become the subject of current research [20], it seems that no attention has
been paid to the surface s–d interaction. We feel that a detailed study on 2D ferromagnetic
order is needed to the compare the contributions of the above two mechanisms.
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